Course Name: CS-315, Parallel and Distributed Computing

Credit Hours: 2-1 Contact Hours: 2-3 Pre-requisites: Operating Systems

Course Introduction:

The "Parallel and Distributed Computing" course covers the fundamental principles and techniques of parallel and distributed computing, focusing on the design, implementation, and optimization of parallel and distributed algorithms and systems. The course also explores the application of parallel and distributed computing to real-world problems in various domains, such as data analytics, machine learning, scientific simulations, and cloud computing.

CLO No	Course Learning Outcomes	Bloom Taxonomy
CLO-1	Understand the principles and challenges of parallel	C2 (Understand)
	and distributed computing	
CLO-2	Understand and optimize performance and scalability	C2 (Understand)
	of parallel and distributed systems	
CLO-3	Apply parallel and distributed computing techniques	C3 (Apply)
	to solve real-world problems in various domains	
CLO-4	Analyze and evaluate the performance of parallel and	C4 (Analyze)
	distributed systems	

Course Plan:

#	Weekly Distribution of Course Contents	
Week-1	Introduction to Parallel and Distributed Computing	
Week-2	Comparative analysis of Parallel and Distributed Computing	
Week-3	Performance Metrics	
Week-4	Memory Hierarchy and CPU Architecture	
Week-5	Parallel Programming Models	
Week-6	Parallelism in Multi-core Processors and GPUs, with Message	
	Passing Interface (MPI)	
Week-7	Parallelism in Multi-core Processors and GPUs, with OpenMP	

Week-8	Distributed Computing Environments, Coordination and		
	Synchronization		
Week-9	Coordination and Synchronization, Cloud Computing Architecture		
Week-	Cloud Computing Services		
10			
Week-	Cloud Storage and Data Management		
11			
Week-	High-Performance Computing, Supercomputers and High-		
12	Performance Clusters		
Week-	Performance Tuning and Optimization, Benchmarking and Profiling		
13			
Week-	Quantum Computing		
14			
Week-	Distributed Computing Applications in Big Data Analytics		
15			
Week-	Distributed Computing Applications in Machine Learning, Computer		
16	Vision and Image Processing, Scientific Simulations		

Reference Materials:

- 1. "Distributed Systems: Concepts and Design" by George Coulouris, Jean Dollimore, and Tim Kindberg (2011)
- 2. "Parallel Computing: Theory and Practice" by Michael J. Quinn (2018)
- 3. "High Performance Computing" by Charles Severance and Kevin Dowd (2018)
- 4. "Big Data: Principles and best practices of scalable real-time data systems" by Nathan Marz and James Warren (2015)